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Diffusion in a Bistable Potential 
at Intermediate and High Friction 
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We study the motion of a Brownian particle in a bistable potential for intermedi- 
ate and high-friction 3'~ Following ideas of Titulaer we perform a high-friction 
expansion of the distribution function P(v, x, t) in velocity and space. We show 
(for arbitrary potential) that the expansion coefficients obey simple recursion 
relations, which allow them to be calculated easily. When terms of order y 5 are 
neglected the resulting differential equations can be transformed into Hermitian 
Schr~dinger-type equations. Using the WKB technique we solve these equations 
analytically for the case of the bistable potential and discuss the various time 
regimes involved in the system, in particular we show that the final approach to 
equilibrium is governed by the Kramers rate. Our results become exact in the 
limit of low temperatures. 

KEY WORDS: Nonlinear Fokker-Planck-Klein-Kramers equation; in- 
verse friction expansion; diffusion. 

1. INTRODUCTION 

Brownian particles in external potentials represent model systems for a 
large number of interesting physical, chemical, and biological systems (for 
reviews see Refs. 1 and 2). It is generally assumed that the distribution 
function P ( v , x , t )  of the velocity (v) and position (x) of a particle with 
mass m is described by the Fokker-Planck-Klein-Kramers (FPKK) equa- 
tion 

8P(v , x , t )  
3t - L ( v , x ) P ( v , x , t )  (1.1a) 

I Laboratoire de Physique de la Mati+re Condens~e, Ecole Polytechnique, Palaiseau, France. 
2 Fakult/it fiir Physik, Universit/it Konstanz, D-7750 Konstanz, Federal Republic of Germany. 

43 

0022-4715/84/0700-0043503.50/0 �9 1984 Plenum Publishing Corporation 



44 Gouyet and Bunde 

with the Liouville operator 

( keT 02 ) 1--q/(x) + ~ v  - V ~ x +  ~ (l . lb) L(v,x) Y m al) 2 m " " 

Here, ~'(x) ~ deo(x)/dx denotes the first derivative of the external potential 
qS(x), 7 is the friction constant, and T is the temperature of the surrounding 
heat bath. 

In the high-friction limit the distribution function in position space, 

Po(x,t) = P(v,x,t)dv (1.2) 
CO 

satisfies the Smoluchowski equation 

3Po(x't) 0 el(x) Po(x,t) + _ _  eo(x,t) (1.3) 
3t 0x - ~ 7  my Ox 2 

Using the transformation 

Po(x, t) = exp [ - q~(x)/(2k. T) ]~ (x, t) (1.4) 

Equation (1.3) takes the Schr6dinger-like form 

kBr O~b(x, t) 
my Ot -- S(x)~(x,t) (1.5) 

where 

and 

keT]2 8 2  +V(x )  
S ( x ) = - -  / Ox 2 (t.6) 

1 [ qS'(x) 12 l ksTO"(x)  (1.7) 
V(x )=~  ~ 2 my my 

of calculating Po(x, t) is reduced to the problem of Now the problem 
finding the eigenvalues X. and normalized eigenfunctions %(x) of the 
associated stationary equation 

S(x)~. (x) = X.~ (x) (1.8) 

X~ and %(x) determine Po(x, t) according to 

Po(x,t) = e x p [ - ~ ( x ) / ( 2 k s r ) ]  ~ b .%(x)exp(-X. t /k .T)  (1.9) 
n = 0  

The coefficients b n are obtained from the initial conditions. 
For harmonically bound particles (1.8) is equivalent to the correspond- 

ing quantum mechanical problem, which can be solved exactly. For anhar- 
monic potentials standard quantum mechanical methods have been em- 
ployed. For the case of particles in a bistable potential, for example, 
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perturbational and variational approaches (see, e.g., Refs. 2-6) as well as 
WKB treatments (7) have been used to study Po(x,t). In particular the 
WKB treatment has been applied to calculate r and )~n analytically; the 
calculations could be extended also to the case of a time-dependent bistable 
potential. (8) In both cases, the resulting distribution function was exact up 
to exponentially small errors for temperatures low compared with the 
potential barrier. Other nonlinear potentials, e.g., a sinusoidal potential, can 
be treated analytically in the same manner. 

In contrast to the situation described above for the high-friction limit, 
analytical results are rare for lower friction. Up to now, only the case of 
harmonically bound particles could be treated analytically ~9) in the whole 
friction regime. It is the purpose of this paper to present analytical results 
for the bistable potential in the intermediate-friction regime, when the 
temperature is low compared with the potential barrier. 

Following ideas of Titulaer, ~~ we first perform a high-friction expan- 
sion in the spirit of the Chapman-Enskog procedure and derive recursion 
relations for the expansion coefficients. We show explicitly, how the result- 
ing differential equations can be transformed into Hermitian Schr6dinger- 
type equations, thereby generalizing (1.4)-(1.8) to the intermediate-friction 
regime. We solve these equations for the case of the bistable potential using 
the WKB technique. 

2. THEORY 

2.1. The Inverse Friction Expansion 

For high-friction y, the term 

7 C ( v ) ~ 7  m 0v 2 + v (2.1) 

is dominant in (1.1b). Therefore it is convenient to expand P(v,x, t )  in 
terms of the eigenfunctions Xn(V) of C(v). Introducing the operators 

a + = - (mf i ) - ' / 20 /Ov ,  a = (m~)- l / zo/ot )  4- (mfl)'/2v (2.2) 

with fl ~ 1/kBT and [ a , a + ] =  1 we find C(v) = -- - a + a ,  which has the 
eigenvalues - n (n = 0, 1,2 . . . .  ) and the associated eigenfunctions 

Xn(v) = n!2(2m/3)~n i)/2 

H n are the usual Hermite polynomials. The operators a and a + act on Xn(v) 
according to 

a + x , ( v ) = ( n +  1)X,+,(v ), ax~(v )=x ,  ,(v) (2.4) 
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where we have used the convention Xk(v) =- 0 for k < O. Our basis set X~ is 
nonorthogonal. It may be associated with the basis set )~n of the adjoint 3 
operator C t, both form a biorthonormal set. The position-dependent part 
in (1.1b) is conveniently expressed by the operators 

d + = - ( m f i ) - ' / z 3 / a x ,  d =  (rnf i)- l /2O/Ox + (~ /m) l / 2OO(x ) /Ox  

(2.s) 
with [ d , d + ] =  O"(x) /m.  a + and a as well as d § and d are adjoint with 
respect to the scalar product 

( f l g ) = f d v f d x e x p [  f i ( 2 v 2 + O ( x ) ) ] f * ( v , x ) g ( v , x )  (2.6) 

In terms of a , a + , d , d  + the Liouvillian (1.1b) becomes simply 

L = - T a + a  + d + a -  da + (2.7) 

P(v,  x, t) can be expanded 4 according to (~~ 

P ( v ,  t )  = t)  ( 2 . 8 a )  
n 

where 

t) (2.8b) 0 = + ' 
i=1 

are solutions of (1.1a, b). By construction, the coefficients /gEil of the "[nl 
inverse friction expansion (2.8b) are orthogonal to )~(v). The function 
ci.l(x, t) and ~[np.,~,/9[i][~' X, t) have to be determined. Following the lines of the 
Chapman-Enskog-procedure  expressions for c[~ l(x, t) and --[n]lg[i] valid up to 
#(~,-s)  have been derived by Titulaer. (1~ The treatment which we give 
here follows essentially the ideas of Titulaer, but in addition we show 
explicitly how the various expansion coefficients are related to each other 
and which are the recursion relations they follow. We expand --In]P[i] t~, r X, t) in 
terms of Xj(V) (I v ~ n) according to 

Ill t) ~ X,(v)GiI/It,l(x)et,l(x, t), i 1, 2, 3 . . . .  (2.9) P[nl(V,X, = = 
l=0 

Here, cL.l(x,t ) is the same function as in (2.8); the matrix elements 
~ / I [ . l (x)  are operators which act on ci . l (x , t  ). By definition, for i=/-0, 

~[I]iltq =--0. When i = 0  we define &I01[q[nl--~ 6l~. The time evolution of 
cl.l(x, t) is governed by the expansion 

Ot - n y  + y ON(x ) ci~](x,t) (2.10) 
i = 0  

3 Adjoint with respect to the ordinary scalar product ff*g dx dv and noted *. 
4 The notation [ ] marks those indices which refer to the inverse friction expansion. 
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where al2l(x ) are also operators acting on c[nl(x, t). For determining ~Ii] ill[n] 
and aIil we insert (2.8b) with (2.9) and (2.10) into (1.1b) using (2.7) and ~[nJ 
utilize the relations (2.4) and the biorthonormality between )G and ~ .  Then 
by comparing the coefficients of .y0 we find 

3[~ =0 ,  CiI2l+tji~l = -6z , , (n+ 1 ) d - 6 e _ , d  + (2.11) 

where 6/n denotes the Kronecker symbol. 
Comparing the coefficients of y - P ,  p = 1 , 2 , 3 , . . . ,  we obtain the 

recursion relations: 
OIp] ,~,~[e] +#[ ; l  (2.12a) [n] = --/'/ '*~"[n-l][n] + d [n+lJ[n] 

P 
l~Y[p+l] = --[ N' ~[i1 0 [P-ill -- (n + l )dO [p] + d + ~  Ie] l.+,lIol I.+,lIol i.l ] io+,-llIol io+,+,lIol 

(2.12b) 

As ~[~ = 6nm , (2, 12a) and (2.11) are particular cases of (2.12b) for l = 0 In]Ira] 
and p 0, respectively. This recursion formula can be equally derived from 
a general perturbation treatment which has been detailed by Titulaer. (11) 
The derivation starting from formula (3.17a) in Ref. 11 is straightforward 
but too lengthy and we do not give it here. From the recursion relation 3~ p] 
and ~(~l+ll[n I can be obtained easily for arbitrary p, n, l. We find 

p =  1: 0[',I = - d + d + n  ~- + 3 + ( n +  1 ) - -  (2.13a) 
m 3x 2 m 3x m 

C [21 ( ) (2.13b) = 6  n + 2  d 2 + 3 /  2 1 (d+)2  [n+l][n] 1,2 2 '- ~. 

p = 2 : 3 [ 2  I---0 (2.14a) 

= - ,  ('+3)d' 
[~+t][~] t,3 3 

[ n + 2  +d2] + G ( f / +  1) nd2d + - ( n  + l)dd*a+ ~--d 

..t_ (~ l ' -  , [ ( f /  q_ l ) ( d + ) 2 d _ f / d + d d +  f/-.2 1 d (d+)2 ]  

--(~l, 3 ~-.t ( d  + ) 3 (2 .14b)  

; = 3: 3['. I = (n + 1 ) ( f / +  2) )2d~ 2 (d + - (n + 1)2(d+d) 2 

+ n ( n +  1 ) [ d + d 2 d + - d ( d + ) 2 d ]  

.+_ f/2(dd + )2 -- /'/(F/ -- 1) + )2 -2- d2(d (2.15) 
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etc. From the general structure of the recursion relations we see that 

E[pl g~[el ~[el g~[pl 
[ n + p - l l [ n l  ' [ n + p - 3 l [ n ]  ' " " " ' [ n - p + 3 l [ n l  ' [n p+ll[n] 

and O[2ql are zero operators. 
The operator 0}1] is Hermitian. For n = 0 it is precisely the usual 

Smoluchowski operator [see the right-hand side of (1.3)]. In contrast, 013~I is 
non-Hermitian, but is reducible to the quadratic form in d and d § as will 
be shown below [formula (2.25)]. 

2.2. Treatment of the Initial Value Problem 

In the inverse friction expansion the problem to solve the complicated 
FPKK equation is reduced to the problem of solving the equation (2.10) for 
c[,](x, t). The initial values c[,](x,0) are determined by the initial distribu- 
tion P(v,x,0). Titulaer has given an explicit expression for et0](x, 0). We 
will show here that a compact straightforward derivation of all c[,l(x, 0) is 
possible in the frame of the # operators. A general initial condition can be 
written in the form 

P(v,x,O) = ~ a[~l(x)x,(v ) (2.16) 
l = 0  

On the other hand, within the inverse friction expansion, P ( v ,  x, 0) is given 
by 

P ( v , x , O )  = ~, ,  7 - ~ X , ( V ) ~ f [ / I [ n ] ( X ) C l n l ( x , O  ) (2.17) 
i = 0  l,n 

Following Titulaer we expand ctnj(x, 0) according to 

c[,,](x,O) = at,q(x ) + ~,, "/-~cl/~(x) (2.18) 
i = l  

Inserting (2.18) into (2.17) and using the biorthonormality between {X,} 
and {~)  we obtain by comparing the coefficients of y -e  in (2.17) and 
(2.16) 

p - I  

[P] x = - ~ [ P l  a / x ~ -  ~ 0 lil c[P-q(x), =1  2,3, C[m](  ) [m] [n ]  [n]~, ) [m] [n ]  [n] P , �9 ' " 
i ~ l  

(2.19) 

where the summation convention (on n) has been used. Equation (2.19) 
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represents a recursion relation for :pl C[mI(X ). For p --- 1, 2, 3 we obtain simply 

[1] C ml(x) = - -  

cl2l/,-'~= ~[ll H Ill "~atxX 
C[3] [ ~,-'t = ~ [ : 1  d [ 2 ]  _1_ ~ [ 2 1  ~ [11  (2.20) 
[rn]k ~] (- ~[[m3][n]-1- [m][l] [l][n] [m][l] [/][n] 

[m][,] ['1["1 ["l[n]) [1( ) 

where again the summation convention for the lower indices has been 
employed. 

2.3. Normal izat ion  

The distribution function must satisfy the normalization condition 

f + ~ a x f +  ~dvP(v,x,t) -=1 (2.21) 

for all times. Inserting (Z8a, b) and (2.9) into (2.21) and using the relation 

;_+2dvx~(v) = 6n, o (2.22) 

we find from (2.21) 

- k ~  o~ . -t- 

f_~ dxctol(X't)+ ,=,k ~=,.= Y-'f_ L~dx~ttgll,lci,l(x,t) (2.23) 

The recursion relation (2.12b) gives 

i - 1  
e [ i ]  _ 1 d + e [ i - 1 ]  @ 1 / ~ f e [ [ 0 J j ] n ] 0 1 i ; j - 1 ]  

[o1[,,] n [ll[n] ~ .= 
j .. 

Since ~[[011][nl = -8n, :d  +, the above relation implies that d + is a left factor 
for every ~Lil Consequently, as d + ~ --(mtS)-l/23o/()x, the second term [01[~] �9 
of (2.23) vanishes when c[nl(x , t) decreases rapidly enough at infinity. This 
is the case for the bistable potential. Thus, (2.21) implies the important 
normalization condition 

( + m dx cf ol( X, t ) =--1 (2.24) 

2.4. The  Genera l  Solut ion 

In the previous sections we have detailed the inverse friction expansion 
and the recursion relations for the expansion coefficients as well as the 
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treatment of the initial conditions and the normalization condition for 
Ctol(X,t ). For finding explicitly the distribution function valid up to a 
certain order p in 1 /7  one has to perform the following steps: 

(1) Using the recursion relations (2.12a, b) the differential equations 
[up to O(7-P)] for Clnl(X,t ) have to be specified. Instead of calculating 
cInl(x,t ) subject to certain initial conditions q , l (x ,0)  it is convenient to 
determine the corresponding propagator Clnl(X, t] xs,0), which is the solu- 
tion of (2.10) with the initial conditions CE,l(X, Olxs, O)= 6(x - Xs); q01(x, 
t [ xs, 0) must be normalized for all times. 

(2) Then for a given initial condition P(v,x,O) the corresponding 
values of cl,j(x,O ) must be determined from the recursion relations (2.19) 
up to O(y-P). The relations yield the functions c! 11 ~x~ e I21 ~,~ 

t m ] k  / '  [ m ] t ~ ] ~  " �9 " 

C [ P] (X ~ which give 0) up order y-P. [m]k l, C[n](X, to Finally, c[~l(x,t) is obtained 
from the propagator by 

cEnl(x, t) = %1(x ,  t l O)cE l(x,, o) 

(3) As the final step, ct~l(x,t ) has to be inserted in (2.9) with 
i =  1,2 . . . . .  p and the corresponding differentiations ~[[/il[nlC[n](X, t) must 
be performed. Using (2.8a, b) we obtain P(v, x, t) up to O(~,-P). 

It is obvious that the main difficulty is to solve the differential 
equations for clnl(x, t) up to the given orderp in l / y ,  step (1). Steps (2) and 
(3) are comparatively trivial. Therefore, in this paper we will restrict our 
attention to step (1) and derive analytical results for the propagators 
cN(x,  t lx,, 0). We will choosep = 5 which corresponds to a regime ranging 
from intermediate to high friction. 

First we present the general method for solVing the differential equa- 
tions for arbitrary external potential and then we will consider as a 
particular example the bistable potential. 

When terms of order ,/-5 are neglected, the final equation for ci~l(x, t) 
becomes 

- - n y - - d  + 1 + - -  d my 2 

+ m,{ q~"(x) 1+  mY 2 ] 2 rnflv 2 ~TV(x) 

n(mp)  ,/2 E - (  n + 2)d*~,"(x)  + n~'"(x)d I + ~(7 -5) 
m7 3 

• c I nl(x, t) (2.25) 
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Equation (2.25) is quadratic in d and d + and is clearly non-hermitian with 
respect to the scalar product defined in (2.6). Up to the coefficient of ~lV(x) 
it agrees with Titulaer's result. By definition we have C[ol(X,t ) =~ Po(x,t) 
+ O(e vt). Setting n = 0 Eq. (2.25) represents an extension of the Smo- 

luchowski equation into the intermediate friction regime; see also refs. 
12-15. For n = 1,2 . . . .  the equation looks considerably more complicated 
than for n = 0. However, as we will show in the following, (2.25) can be 
handled for all n on the same footing without difficulties. 

For solving (2.25) we suggest the transformation 

~[nl(x, t) = exp(/gGi~](x))c[.l(x, t) (2.26) 

which is similar to (1.4), and introduce a new potential function ~[n](X). We 
will choose GEnl(x) and ,~E.l(x) such that f%l(x, t) satisfies a Schradinger- 
type equation. To facilitate the derivation we introduce operators A. and 
A,,* which are Hermitian with respect to the ordinary scalar product 
(f, g) ==- f f*(x)g(x)dx:  

A~ = - (m/9) - , /20 /Ox + (m/9)l/2~i. l(x)/(2m) (2.27a) 

A~ = (m/9)- l /20/Ox + (m/9)~/2~i,l(x)/(2m) (2.27b) 

Using the identity 

i) / a x  = exp( -/gG[.])(O/~)x -/gG['.l)exp (/gG[.]) 

the operators d and d + can be conveniently expressed by A. and A*.: 

d + = exp(-/gGEnl) [ A• + (/9/m)l/2(G['n] - q~inl/2)]exp(/gG[.I) (2.28a) 

d =  exp(-/gG[.I)  [ A~ + ( / 9 / m ) ' / 2 ( e / -  G(~ 1 - ~i.1/2) ]exp(/gGfn]) 

(2.28b) 

Inserting (2.28a, b) into (2.25) we obtain immediately a differential equa- 
tion for ~[nl.(x, t) where operators A*nA~, A*,, and A~ act on ~[,l(x, t). Now 
we choose ~E,l(X) and Gi~](x ) such that the coefficients of the terms linear 
in A and A* vanish identically. The result is 

G[,j(x) = 4,(x)/2 - t9 - ' ( n  2 + n - 1/2)ln g(x)  (2.29a) 

~[,l(x) = +(x) - / 3  1(2n + 1)ln g(x)  (2.29b) 

where g ( x ) - - 1  + eO"(x)/my2; Irrelevant additive constants have been 
dropped in (2.29a, b). 

This derivation supposes here g(x) to be positive definite so that the 
friction coefficient must satisfy, 
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Finally we obtain 

Ot - [ - ny + nmy O"(x)g(x )  + -2m2fly 3 - -  0W(x) 

1 g (x )A~A,  + ~Y(y-5)l+N(x, Q (2.30) 
Y 1 

To simplify (2.30) further we multiply both sides from left with (1 - 0"(x) 
~my 2) and express A, and At ,  by (2.27a, b) with (2.29a, b). Then we 
introduce the reduced quantities 

U(x)  =--(~(x)/mv, Ut.l(x) -- q)E.l(x)/mT, 0 = k s T / m v  (2.31) 

and obtain from (2.30) in the intermediate-friction regime, neglecting 
O(y -5) terms: 

-Y1 U"(x) ]O 0~[.](x, t)_~ - L  1[ - - {ny0+  S[,](x)}+i,l(x, t  ) (2.32a) 

where S[,l(X ) is a Schr6dinger-type operator, 

S[,](x) = - 0  2 0--~-2 + V[,l(X ) (2.32b) 
Ox 2 

with an effective potential V[, l(x), given by 

VE.}(x) = ( U( . l (x)) : /4  - (O/2)Ut;l(x)  - 2nOU"(x) 

+ ~y n(1 -- n)O2UW(x) (2.32c) 

Equations (2.32a-c) generalize (1.5)-(1.7) in a straightforward manner. For 
n = 0  the operator S[0](x ) becomes identical to S(x) ,  when ~T[0l(x ) 
=--~[ol(x)/rny is substituted by U(x). Therefore the eigenfunctions (~tOlp(X) 
and eigenvalues hi01 p of the eigenvalue equation 

SI,l( x)~t,l  p ( x) = X 1.1 e cPI.l e ( x) (2.33) 

with n = 0 can be directly obtained from those of (1.8) when the potential 
function U(x) is substituted by Ui01(x) from (2.29b). Consequently, Xt010 
= 0 and ept01o(X)~exp(-Uiol(X)/20) solve (2.33), and (2.32a) has the 
time-independent solution t)iol(X,t ) = eplol0(x ), leading to the correct equi- 
librium state Po(x, t ) ~ e x p [ -  U(x) /O] for t ~ ~ .  

For solving (2.32a-c) in general we expand +t,l(x, t) in terms of the 
eigenvalues 7t E,I p and eigenfunctions q~t,l p (x) of (2.33): 

~[,](x, t) = 2 eP[nlp(X)~[n]p(t)exp[ - (ny + Xi,,lp/0 )t I (2.34) 
p 
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and determine the expansion coefficients xNp(t)  from (2.32a). We obtain 

FN q 
p Y 

(2.35a) 

where 

Fi,lm =--f_?:dxep~,lp(x)U"(x)ep[,lq(X ) (2.35b) 

In the high-friction limit the right-hand side of (2.35a) vanishes for n = 0 
and we obtain Xio]p(t ) -- K[0]p(0 ). 

For the particular case that the matrix elements F[n]p q are diagonal in 
p and q Eq. (2.35a) simplifies considerably; [See below, formulas (3.7), (3.8), 
and (3.20).] Then (2.35a) is solved by 

[ F[']q/'{ (ny+Xi,]q/O)tl (2.36) t~[~]q(t) = ~[nlq(0)exp 1 -- f[nlq-----/y 

The initial values ~[,]q(0) have to be determined from the initial conditions 
for P(v, x, t). Inserting (2.36) into (2.34) we obtain 

~[,l(x, t) = ~ ~[,le(X)~[~lp(O)exp(- t/ri~lp ) (2.37a) 
P 

where 

l"tnlp = [(ny + Xi , lp /0 ) / (1  - F [ , l e / y ) ] - z  (2.37b) 

are the characteristic times for the evolution of P(v, x, t) in the intermediate 
friction regime if F is diagonal. To be consistent with (2.25) the terms of 
O(y-5)  have to be neglected in (2.37b). 

"r[nlp must be positive, which implies Fi,lp < y. This condition is 
always fulfilled when 

sup(U"(x) )  < ~. (2.37c) 

Inequalities (2.29c) and (2.37c) represent bounds to the intermediate fric- 
tion regime. 

3. T H E  B I S T A B L E  P O T E N T I A L  

As a nontrivial application of the formalism developed in the preced- 
ing section we consider the motion of a Brownian particle in a bistable 
potential. The potential U(x) consists of two wells at x 1 and x 2 with depths 
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Fig. 1. 

I 

i 

/ ? 

I 

-{){2n+ �89 - 

~U(x) 

Lu_2_ _ _ x . _ /  

Xo x2 

~ e(2n§189 - . ~ ,  - .  - 

U(x) and V(x) versus x. For  illustration, the energy levels given in (3.3a-c) are 
d rawn into V[nl(x ) for n = 1. 

U I and U 2 and curvatures U;' and U~'. Both wells are separated by a 
barrier at x 0 - -0  with altitude U 0 and curvature U~'. Inequalities (2.29c) 
and (2.37c) imply IUs < Y, a = 0 ,  1,2. In the following we will restrict 
ourselves to temperatures 0 low compared with the barrier heights 2x U 1 
-~ U 0 -~U 1 and AU 2 ~ U 0 - U 2. Then VH(x  ) is mainly determined by the 
term (U(,l(X)/2) 2 and shows three minima which are located close to the 
three extrema of U(x) (see Fig. 1). For calculating the eigenvalues and 
eigenfunctions of Vfn I (x) we shall use the WKB approximation. We follow 
essentially the treatment which has been elaborated by Caroli et al. (7) when 
considering the diffusion in a bistable potential in the high friction limit but 
limit ourselves in this paper to initial distributions located close to the 
minima of wells 1 and 2, where Vinl(x ) can be approximated by harmonic 
potential wells. In order to be consistent with the WKB approximation we 
need to know the characteristic parameters of VL. 1 (position 2~ of the 
minima, values of V 1,1 and of its curvatures at the minima) to lowest order 
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in O/A U~. We find 

( 0 ) (3.1a) ~o=x~+O S~ 

vl~ 4"+10u:+o( (  ~ ) 2) 2 ~ (3.1b) 

, 1 ) 2 ( 0 )  (3.1c) v~n~(xo) = ~ (u: + o 

which yields for x in the vicinity of the minima 

4n + 1 0 U " +  I ( U;' Vlnj(X) 2 ~ )2 (x  - xo)  2 (3 .2)  

We are interested only in the low lying eigenvalues of S[~ 1 for which 
])~[,]- V[,j(x,)] is the order of O]U"]. Then for low temperatures, i.e., 
kBT/AO, ~ O/AU~ << 1, the three wells of V[~ 1 can safely be approximated 
by harmonic potentials (3.2) irrespective of the considered friction. 

In addition, in (3.1b, c) the anharmonic part of V(x) does not appear 
to lowest order in O/AU,. It will turn out that, as long as the initial 
distribution is located in the quasiharmonic region of wells 1 and 2, and as 
long as the temperature is low enough, the bistable potential can be 
approximated by piecewise harmonic potentials. 

For estimating the time scales involved in the relaxational processes we 
consider the "energy" levels Al~]p in the three valleys of Vt, 1 . 

A ( " ) -  4n+lou~'+OiU,~ '] (p+�89 p = 0 , 1 , 2 , .  (3.3a) [nip 2 " " 

which yields for a = 1,2 

A(") = - 2n) U;' (3.3b) t,,Jp o(p 

while for a = 0 we have 

A(-) = [,qp O(p + 2n + 1)l Ug' I (3.3c) 

a('~) =-20nU,~', a = 1,2. These For n :~ 0 the lowest eigenvalues are "~I,10 
values can be taken as a good approximation for the lowest eigenvalues of 
S[, l . Tunneling between wells 1 and 2 only can give exponential small 
corrections ~ e x p ( - A  U1,2/O ) which can be neglected at low temperatures. 
The corresponding eigenfunctions are the usual oscillator functions. In 
contrast, for n = 0 ,  the two lowest eigenvalues are Al01]0 = A12~0=0 and 
tunneling between the two states must be considered explicitly. Therefore, 
both cases n = 0 and n = 1,2, 3 . . .  have to be treated differently. We start 
with n = 0. 
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3.1. Calculation of c [ 0 1 ( x , t )  

For n = 0 Eqs. (2.33) and (1.8) become formally identical, when U(x) 
in (1.8) is substituted by Ui0l(X ). The eigenvalue problem (1.8) has been 
studied in [7] within the WKB approximation which becomes exact in the 
low-temperature limit. Performing the same approximation for (2.33) and 
limiting ourselves to initial distributions essentially located inside the wells 
instead on the top of the barrier we find the following result: The eigen- 
states r are linear combinations of Weber functions Dl(y ) with 
integer t, centered at the bottoms of the wells. The two lowest eigenstates 
q0iolo(X ) and q~Lol~(x) are represented by Gaussians centered at x~ and x2, 
while the higher eigenfunctions Cp[ol e with p = 2, 3, 4 . . . .  are described by 
the pure "oscillatory" states inside the wells. In detail we have for p -- 0, 1 

qOtolo(X ) = @oO(x)(l + d72)-1/2 _t_ q)(O2)(X)( 1 q- d21)-l/2 (3.4a) 

q~iOl,(X) = -- @oa)(x)(1 + dal) - ' /2  + @o2)(x)(1 + d~2) - ' /2  (3.4b) 

where 

and 

Us 1/4 
Cp(o~)(x)--( ~ ) exp[ (x-40xa)2Ua' j (3.4c) 

d,2 = (U;'/U~')'/4exp{[ l-~lol(Xi) - l~to](X2)]/20 ) (3.4d) 

F o r p  = 2, 3, 4 . . . .  [p now corresponds to a couple of indices l, (a)] we find 

�9 D, ( x - G )  ~ (3.5a) 

w h e r e l =  1 , 2 , 3 , . . . ,  a = l , 2 ,  and 

Dl(Y)=(-1)texp ( y2 d-Lexp(- y2 

The corresponding eigenvalues are given by 

X[OlO = 0 (3.6a) 

0 ((U(,lUd, i)~/2exp[(~Iol(X,)_ Otol(Xo))/O] Xlol�91 = 

+ (U~'[Ud'l)'/2exp[((Jto~(X2)- Uiol(Xo))/O]} (3.6b) 

and 

hlole==-X~l~=OlU", p>=2, / = 1 , 2 , 3  . . . . .  a = l , 2  (3.6c) 

In the high-friction limit /~Iol(G) tends to U~. As a consequence, r 
and r tend to %(x) and q~l(x), respectively, which are the solutions of 
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(1.8), and ~k[O]l tends to )t 1. For p=>2 the eigenfunctions rp[01p(x ) and 
eigenvalues )tE01p are independent on 7 and are identical to the correspond- 
ing %(x)  and Xp from (1.8). To determine qol(x, t) we have to calculate first 
the matrix elements FE0]p q from (2.35b). Then the determine ~[Olp(t) from 
(2.35a) and C[ol(X,t ) from (2.26) with (2.29a) and (2.34). Using Eqs. 
(3.4a)-(3.5) it is a simple matter to calculate the matrix FEolp q. We find 

u;' u~' 
F[~176176 1 + d~ + - - 1  +a722, (3.7a) 

u~'-  u(' 
F[~176 = F [ ~ 1 7 6  d21 -~" ~712 (3 .7b)  

u;' uj' 
F[~ - 1 + d 2," + = 1  + d,22 (3.7c) 

while for q, q _-> 2 we have 

g[olpq--gi~o~zr=U;'.d~r / , / ' = 1 , 2 , . . . ,  a, f i = l , 2  (3.8a) 

and 

r[olo p --= F[olp o ~- F[o]p I --= g[o]1 p ------- 0 (3.8b) 

Except p, q = 0, 1 the F matrix is diagonal in p and q. Therefore, for p = 2 
~[o]p(t) is given by (2.36). When U( '=  U[ we have F[olo 1 ------0 and then 
(2.36) holds for all y. In the general case KEOlO(t ) and ~[o11(0 are coupled by 
(3.8b). Neglecting expressions of order 7 -5 in klolo and k[ojl we finally 
obtain from (2.35a) and (3.7a)-(3.8b): 

 ,o,o t, ] ~o~o(t) = ~o~o(O) + ~o~,(o). ~ 

K[~ = ~[~ X[~ F[~ t] (3.9b) 

and C[ol(X, t) becomes 

C[o](X, t) = g(x)- ' /2e-  u(x)/2o 

{ I -- 1 x ~olo(X)~ojo(O) + ~ro~l(o) - U - ~ ~ 1 7 6  + ~%,(x) 

"[011 a + ~2 E~{~)~(0)W(~)t(x)exp - --g- 1 + t (3.10) 
a = l  l [ Y 
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For t-~ ~ ctol(x,t ) must tend to the stationary equilibrium distribution 
Peq(X), i.e., 

lifnC[o](X,t ) = Peq(X) = cexp[ - -  U(x)/O t _(3.11a) 

where 

irrespective of the initial conditions. Furthermore, ci01(x , t) must be normal- 
ized for all times. We will show now, that these conditions are satisfied by 
(3.10) for arbitrary initial conditions. To be consistent with the WKB 
approximation made above we expand U(x) in the prefactor of (3.10) 
around xl, x 2, and x 0 and neglect third- and higher-order derivatives. This 
yields 

Ir ) g(x)-1/2exp( -- U(x) /20  )r ~-- ~folo(0)~'/2exp( - U(x)/O ) 

(3,12) 

with ? = { f+~dx g(x)exp[ -  U(x)/O]} l. Inserting this result into (3.10) 
and performing the limit t ~ ~ we find 

~rojo(O)~ 1/2 = c (3 .13 )  

which determines ~to]o(0). 
For the following it is convenient to consider the propagator of 

e[ol(x, t), qol(X, t I xs, 0), which is subject to the initial condition C[ol(X, 0 J x~, 
O) = 6(x - x,) with x s located inside one of the wells. We expand ~Oio]o(X ) 
as well as q0loll(x ) in terms of 1/,{ and neglect those terms which lead to 
contributions of O(7 -s) in @l(x, t). Noting that Xi011/0 is of order 7 - i  we 
obtain finally 

oO 

C[ol(X, t I x, ,  0) - q%(x,)%(x) ~ oePp(x)~p(x')e= --,/T[0,, (3.14) 

where cpe(x ) = limv~q~tolp(x ) are the WKB eigenfunctions of (1.8). The 
relaxation times r[O]p are given by 

~[oj~0 = 0 (3. l Sa) 

~t[0]l ( F[~ 11 ) 
r[o]',= T 1 + + 0 ( 7  -5) (3.1Sb) 

Y 

while for p ~ 2 we have 

= [~(~) i lU" " ~[01'p VIOF)- = -~ (1 + U ; / ? ' )  + O(7 s) (3.15c) 

(c~ = 1,2, l = 1,2,3 . . . .  ). Equations (3.14) and (3,15a, b, c) are ourfinal 
result for the propagator ctol(x, t lx~,O ). The result is valid in the interme- 
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diate-friction regime and for temperatures 0 low compared with the barrier 
heights AU 1 and AU 2. It becomes exact in the limit 0/AU1,2~0. 

Using (3.14) it is easy to verify that c[0l(x, t) satisfies both normaliza- 
tion condition (2.24) and stationary equilibrium condition (3.11a) for 
arbitrary initial conditions. Equations (3.15b, c) describe the relaxation 
toward global and local equilibrium. Taking )t[oll from (3.9b) and F[0]i I 
from (3.7c) and employing the convenient definitions 

7 2 Y 

the relaxation time to global equilibrium, ~'[0ll, becomes 

'/'[0]1, = ~--~W ~ 1 - - ' ~  "~- H l,eq ~ e 

+ ~1 - + n2x q ,e -au2/~ (3.16) 

nj,eq and rt2,eq denote the equilibrium population of wells 1 and 2, respec- 
f~ f~ j x  = (1 + ( u , /  u9 tively, defined by nl,eq~ Peq(X) 

exp[(U 1 -- U2)/O]} -I and na,eq =--f~dxPeq(X)--= 1 - nix q. It is easy to ver- 
ify that the terms proportional to nl,eq and n2,eq in (3.16) cancel and ~-[o]11 
becomes simply 

'7"[O111 = WI__>2 + W2_~l (3.17a) 

where 

~ ~ 1 6 2 1 7 6  (3.17b) W , - , 2 = - ~ y  1 - 7  e 

and W2_~ ~ results from WI~ z by changing the index 1 into 2. As we show in 
the appendix, W~, 2 and W2__,~ can be identified with the escape rates o u t  

of the wells 1 and 2, respectively. 
The rates are exact up to order ./-5 and valid for temperatures small 

compared with the barrier heights. It is easy to verify that the considered 
friction regime they agree with the Kramers rates, given by (16) 

_ _ o:~ w~ 2 + y A 
I-K,,~_, B 2~o ~ ~ -- ~- exp - - -  

3.2.  Ca lcu la t ion  of c[. l (x,  t), n =/: 0 

When n =/: 0, the norm N{, l (t) =-- f+ ~dx c[,] (x, t) is no more conserved 
but decays as 

N[,l(t) ----- e - nV'N[,l(0) (3.18) 
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The approximate eigenvalues Xi,lp of Sin I, n r 0, are identical to AN. e 
from (3.3a-c). Tunneling between different wells is irrelevant, since it can 
only lead to exponentially small corrections to the relaxation times. Hence 
the corresponding eigenfunctions are 

~)[n]p(X) ~ ~a~l(X ) = (l! )--1/2( Ua'/2~70 )l/4Dl((X - xa) ( Ua'/O )1/2) 
(3,19) 

and the F matrix reduces to 

FI~',,, = U2'8~,~,8,,r, l , l '=  O, 1,2,3 . . . .  ; a , a ' =  O, 1,2 (3.20) 

As a consequence, g'En] (x, t) is given by 

+[nl(X, t) = 2~p~:]z(x)x~:~,(O)exp(-t/'rl~ (3.21) 
La 

where for a = 1, 2 

[ ( 0:a2 0:a4) 0:2__a (1 0:a2)] (~:~,)-'= 7 n 1 72 y4 + t r~ + ~ (3.22) 

and this is precisely the beginning of the expansion of the eigenvalue X~,t for 
a harmonic potential obtained by Risken and Vollmer. (17) For a = 0, 

I(  32,, "[-JU =Y n 1 + 7 2  74 + ( l + 1 ) 7  1 -  u J 

The relaxation times are independent on temperature and small compared 
with the Kramers time. For a = 1,2 we have 

( 2 4 )  
(r~:~,) ' =  (r~gl)t)-'+ nu 1 % % (3.24) .~2 74 

and the corresponding eigenfunctions are identical to q0} "~ from (3.5a). 
From (3.21) we obtain finally the propagator ci,j(x, t Ix,, 0): 

q , l ( x , t  I x , , 0 ) =  2 exp - n 7  1 72 74 t 
= ~,2 0:~0"~(x,)  

• r - l  0:2 1 + t 
t=o 7 

%2 2 0:4 t] @~176 + exp[-"~'( 1+7- 74) J ~o(O)(Xs) 
• ~ __ @~176 - ( l  + l) 1 - t (3.25) /=0 
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When the initial distribution is located say in well 1, we have cp}2)(x,) 
~@~ and the corresponding sums in (3.25) are zero. From the 
above expression (3.25) we can calculate more precisely the norm of 
q~j(x,t). For xs close to G ,  a = 1,2, we find 

Nfnl(t) = NI,,l(0)ex p - ny 1 ~% ~ ~2 .[4 t (3.26a) 

while for G close to x o we have 

Nl~](t)='NH(O)exp[-y(n+(n+l)~2-(2n+l)~~ 1 7 ~ -  t (3.26b) 

3.3.  C a l c u l a t i o n  of P(v,x,t) 

In the preceding sections we have detailed the propagators c[~l(x, t I Xs, 
0) for n = 0, 1, 2 , . . . .  When considering initial distributions close to the 
bottom of well a, a = 1 or 2, we can combine Eqs. (3.25) and (3.14) to give 

C[~l(x, t lXs ,0) = pfinR " ] - - 0  "n,0 exp[--  ny(1 

X ( [~O(a)(X)]2(1 -- ~n,O) 

4)] 02 a 
y2 .),4 t 

+ - -  %(x)  E cp} ~) (x)cp} ~) (G)exp( - t / r}  ~)) ) 
~0(x,) l= 1,2 . . . .  

(3.27) 

where ~-}~)~ r~gl) t and 

~0(x) , . . .  ( t ) 
-0Pfi~=-- cp2(x) + _~, )  q),tx)q)4xjexp[_ __r[011 

From (3.25) the distribution function for a given initial distribution is 
obtained easily. After cH(x,O ) has been specified we find cinj(x,t ) by a 
simple integration, as detailed in Section 2.4. The final result for P(v, x, t) is 
obtained by summing terms like ~[[/][nlC[nl(X, t), which are determined by 
successive application of operators d and d + on c(~ 1 and hence on different 
@~)(x). d and d + act on q0}")(x) as follows: 

---~ ~% [(l-}- l)l/2~(l+)l(X ) --ffl~(a)(X)l (3.28a) a+~d~  T 

% [ ( / +  1)'/2q0(+)ffx) + 3~r (3.28b) a~} ~ = y . 

where we have defined @~) ~ 0 for l K O. Using these relations it is easy to 
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calculate &[l') c .  [ Jill [ l 
function. 
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for given i ,I,n and then to obtain the distribution 

4. CONCLUSION 

In this paper we have derived recursion relations for the coefficients of 
the inverse friction expansion introduced by Titulaer. (~~ Using these recur- 
sion relations it is an easy matter to calculate the coefficients up to any 
order one likes. As a by-product we have derived a normalization condition 
for Clo](X,t ), which reflects the normalization of the spatial distribution 
function. Our further studies were restricted to the intermediate- and 
high-friction regime. Using a special transformation we have shown that 
the problem of finding P (v ,x , t )  in this regime can be reduced to the 
simpler problem of solving a set of Schr6dinger-type equations. 

We have used this method to study analytically the motion of Brown- 
ian particles in the bistable potential at intermediate and high friction, in 
particular the time evolution of initial distributions close to the minima of 
the potential wells. We have confined the study to temperatures low 
compared with the barrier height. To solve the Schr6dinger-type equations 
and to calculate propagators ci,l(x, t lxs,O ) we have used the WKB tech- 
nique, the results become exact in the limit of low temperatures. We have 
shown that the final approach to equilibrium is governed by a relaxation 
time, which is precisely the Kramers time in the considered friction regime 
[up to O(v-5)]. 

We have not considered the time evolution of initial distributions close 
to the top of the potential barrier. It is indeed possible to apply our method 
to this case also, but the detailed study of the decay of unstable states is 
nevertheless coml61icated and is beyond the scope of this paper. It will be 
subject of a further publication. 
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APPENDIX: EVOLUTION EQUATION FOR THE POPULATION 
OF ONE WELL IN THE VICINITY OF EQUILIBRIUM 

The population nl(t ) of well 1 is defined by 

F / l ( / )  = ;:o dx Po(x, t) (AI) 
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Replacing P0(x, t) by its 1/ , /expansion leads to 

0 0 co 

n,(t)= f~oodxc[o](X,t) + f_ dx ~ y '~[[~{[.](x)c[.](x,t) (A2) 
- - o c  i = l  n 

From the recursion relations we know that all operators #[il contain a 
[ 0 ] [ n ]  

left factor 8/Ox and therefore can be written as CIil -- (8/Ox)Q[~Ii,] with [o][n] 
Q[0 again a differential operator. Then the integral in the second term of [o][n] 

the right-hand side of (A2) becomes 

O[o][.]( x)c[=]( x, t) ) l x=O 
i = l  n 

which is exponentially small (~exp[--AUi,2/O]) for particles being in the 
vicinity of equilibrium and therefore must be neglected (see Section 3.2). 
Thus, in the intermediate and high-friction regime nl(t ) is simply given by 

~,( t) = f~  dx Cloj( X, t) (A3) 

when the initial distribution of the particles is close to the minima of U(x) 
and the temperature is low compared with the potential barriers. For t-~ oe 
nl(t ) tends to the equilibrium population nl,eq ; C[o](X,l ) is determined by 
the propagator c{01(x, t[x~,O) and the initial distribution c[01(x,,0). From 
(3.14) we obtain 

0 2 + c o  

C[ol[X , , 0) (A4) 

the higher terms in the sum of (3.14) do not contribute to nl(t ). As 
f~ cpg(X)=~ nl,eq , (A4) is equivalent to the equation of motion 

~ , ( t )  = - ~ - ~ ; i ' , ( ~ , ( 0  - n , , o q )  

which can be written 

~ , (0  = - n2'~ n,( t )  + ~"eq ~2(t) (AS) 
~-[o] 1 ~'[o] 1 

Equation (A5) shows t h a t  n2,eq//'r[0]l ~ W I ~  2 and t/1,eq/7"[0]l ~ W2_~1 can be 
identified as hopping rates W~j  for a particle to jump from well i to wellj. 
The inverse hopping rate is identical to the mean escape time the particle 
needs to diffuse from well i over the potential barrier. 
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